On monotone ill-posed problems in Hilbert spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Complexity of linear ill-posed problems in Hilbert space

Information complexity of ill-posed problems may be seen as controversial. On the one hand side there were pessimistic results stating that the complexity is in nite, while on the other hand side the theory of ill-posed problems is well developed. In contrast to well-posed problems (continuous solution operators) the complexity analysis of ill-posed problems (discontinuous solution operators) i...

متن کامل

Regularization Methods for Ill-Posed Problems with Monotone Nonlinear Part

We present regularization methods for solving ill-posed Hammerstein type operator equations under weaker conditions than in earlier studies such as [13]. Our semilocal convergence analysis is based on majorizing sequences. Numerical examples where the new convergence criteria are satisfied but the old criteria are not satified are also presented at the end of the study. AMS (MOS) Subject Classi...

متن کامل

Optimal Regularization for Ill-Posed Problems in Metric Spaces

We present a strategy for choosing the regularization parameter (Lepskij-type balancing principle) for ill-posed problems in metric spaces with deterministic or stochastic noise. Additionally we improve the strategy in comparison to the previously used version for Hilbert spaces in some ways. AMS-Classification: 47A52, 65J22, 49J35, 93E25

متن کامل

Iterative methods for nonlinear ill-posed problems in Banach spaces

In this paper, we study convergence of two different iterative regularization methods for nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration, the other one the iteratively regularized Gauss– Newton method with an a posteriori chosen regularization parameter in each step. We show that a discrepancy principle as a stopping rule renders these iteration schemes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science and Cybernetics

سال: 2016

ISSN: 1813-9663,1813-9663

DOI: 10.15625/1813-9663/11/4/8155